
1 of 6

CRITERIA FOR SOFlWARE MODULARIZATION

David N. Card* - Gerald T. Page* - Prank E. McGarry**

*Computer Sciences Corporation, Silver Spring, MD 20910
**National Aeronautics and Space Administration, Greenbelt, MD 20771

ABSTRACT

A central issue in programning practice involves
determining the appropriate size and information
content of a software module. This study at-
tempted to determine the effectiveness of two
widely used criteria for software modulariza-
tion, strength and size, in reducing fault rate
and development cost.
moaules developed by professional programmers
were analyzed. The results indicated that mod-
ule strength is a good criterion with respect to
fault rate, whereas arbitrary module size lini-
tations inhibit prograa~ar productivity. This
analysis is a first step toward defining enpiri-
cally based standards for software modulariza-
t ion.

Data from 453 FORTRAN

INTRODUCTION

The module is the basic unit of software devel-
opment, maintenance, and management. A basic
activity of the software design process is the
partitioning of the software specification into
a number of program modules that together sat-
isfy the original problem statement.
this, programers need criteria for defining the
information content and organization of modules.

The major theoratical criteria for software mod-
ularization include strength/cohesion and m u -
plingl and information hiding.
are, however, difficult to quantify. A n inde-
pendent observer of the developPant process can-
not easily determine the levels of strength,
coupling, and information hiding achieved in any
given module. The use of these concepts is thus
limited in an environment where quality assur-
ance (as adherence to standards) is stressed.

Measures of size (number of source lines of code
oc executable statements) have consequently been
adopted as a simple e~pedient.~
benefits have been claimed for module size limi-
tations, at present there is no theoretical
basis or empirical evidence for using module
size as a criterion for software modulariza-
tion. 4

To do

These criteria

Although many

The purpose of this study was to compare the
effectiveness of size (e.g., a BO-line?podule
standard) and a theoretically based measure
(strength) as criteria for software modulariza-
tion. Strength (or singleness of purpose) was
chosen for this comparison because, like size,
it can be determined from the contents of a
single module. Measuring coupling or informa-
tion hiding requires that more than one module
at a time be examined.

This study, therefore, compares the effective-
ness of module strength and size criteria with
respect to nodule cost and fault rate.
maintainability (or modifiability) is another
important software attribute, it was not pos-
sible to measure or analyze it in this study.
Because some programmers generally'produce low-
fault, low-cost modules while others produce
expensive, faultprone modules, it was also nec-
essary to investigate the interaction of these
criteria with individual programer performance.

Although

DATA ANALYZED

This study examines data from 453 new FORTRAN
modules developed by 26 professional programmers
for 5 major software development projects. The
term .module. has been defined in many different
ways. For the purposes of this study, it refers
to a FORTRAN subroutine, or the smallest program
unit that is independently compilable. Although
more sophisticated languages are available, many
organizations rely on F O R T " for scientific
computing applications. This study is thus
relevant to current practice. Furthermorer
these modularization criteria seem likely to
remain important considerations in software
development using new languages such as Adat
(for which extensive data are not yet available).

The Software Engineering Laboratory5 (SEL) col-
lected these data as part of an ongoing program
of software measurement and technology evalua-
tion. The SEL is a research project sponsored
by the National Aeronautics and Space Adminis-
tration/Goddard Space Flight Center (NASA/
GSFC) and supported by Cwputer Sciences Corpo-
ration and the University of Maryland. The SEL

tAda is a registered trademark of the
u.S. Government, Ada Joint Program Otfice.

4-16

2 of 6

SMALL
MEDIUM
LARGE

s t u d i e s sof tware developed f o r s p a c e c r a f t f l i g h t
dynamics appl ica t ions . These systems provide
ground-based suppor t f o r s p a c e c r a f t naviga t ion
and cont ro l .
30,000 t o 150,000 source l i n e s o f code.

Typical p r o j e c t s produce from

154 1 TO 31 0.31
148 =TO64 0.31
151 85 OR MORE 0.32

Module S t renqth

Myers6 d e f i n e s seven l e v e l s of module s t rength .
I n descending order, t h e s e are f u n c t i o n a l , in-
formational , communicational, procedural ,
classical, logical, and co inc identa l . A high
(func t iona l) - s t rength module p e r f o r m a s i n g l e
wel l -def ined funct ion. Myers contends that
high-strength modules are s u p e r i o r to lor
s t r e n g t h modules.
to t e s t t h i s theory exac t ly , a reasonable ap-
proximation was made.
a t t e m p t s to develop o b j e c t i v e measures of module
s t r e n g t h 7 t 8 seem promising, they are not (i n
their p r e s e n t forms) e a s i l y appl ied. ConSe-
quent ly , they were n o t employed i n t h i s study.

Ins tead , programmers determined t h e s t r e n g t h of
a module using a c h e c k l i s t .
each module they developed a6 performing one or
more o f t he fol lowing funct ions: input/outpUt,
log ic /cont ro l , and a lgor i thmic processing. DiS-
t inguish ing t h e tms of func t ions seemed to be
a less ambiguous t a s k than i d e n t i f y i n g t h e number
o f func t ions , because t h e number of func t ions
depends on t h e l e v e l o f decomposition r e -
ognized by the respondent.
func t ion type is a necessary (but not suff?-
c i e n t) c o n d i t i o n f o r high module s t rength .

Those modules described as having o n l y one fUnC-
t i o n were classified as high s t r e n g t h ; those
described as having t w o func t ions were classi-
f i e d as m e d i u m s t r e n g t h ; and those modules de-
scribed as having t h r e e or more funct ion6 rated
low s t rength .
this c l a s s i f i c a t i o n process.

Although it was no t possible

Although -me r e c e n t

P r o g r a ~ l ~ s r s rated

Performing a Single

Table 1 s-rizes the r e s u l t s of

LOW
MEDIUM
HIGH

Table 1. Module S t rength D i s t r i b u t i o n

90 n 0.29
176 Bo 0.32
187 48 0.32

MEAN 1 DECISIONS PER I 1 MODULE 1 N!4G\tF I
STRENGTH MODULES STATEMENTS !$---:!:.

Module S i z e

The 453 modules i n t h e sample were classified
i n t o three approximately e q u a l ordered groups On
the basis o f the number of executab le Statements
i n each module. Table 2 shows the r e s u l t s Of
t h i s c l a s s i f i c a t i o n .

The l a r g e s t module i n t h e sample conta ined 267
executab le s ta tementa. The d i v i d i n g l i n e of 31
executab le s ta tements is s i g n i f i c a n t because, i n
t h e environment s t u d i e d , it corresponds to about
60 source l i n e s of code. Many p r o g r m i n g
s tandards3 l i m i t module s i z e to one page (or
50 to 60 source l i n e s of code). The informal

g u i d e l i n e used i n t h i s environment is t h a t no
m d u l e should exceed 2 pages (about 64 execut-
a b l e s ta tements) .
s i z e range from 50 to 200 executab le state-
m e n t ~ . ~
t h e v a l i d i t y of such s tandards , i n genera l , and,
i n p a r t i c u l a r , to determine i f t h e local guide-
l i n e should be st rengthened.

M i l i t a r y s t a n d a r d s on module

One purpose of t h e s tudy w a s t o test

Table 2. Module S i z e D i s t r i b u t i o n

MEAN

L%rlEs STATEMENTS EXECUTABLE
STATEMENT

I MCllLE I NUMBER OF I EXECUTABLE I DECISIONS PER

ANALYSIS RESULTS

The o b j e c t i v e o f t h e a n a l y s i s was to determine
t h e e f f e c t o f module s i z e and s t r e n g t h c r i te r ia
on q u a l i t y measures, t h a t is, t h e module cost
(number o f hours per executab le s ta tement) and
f a u l t rate (number of f a u l t s per executab le
s ta tement) . An i n i t i a l examination o f t he data
revealed t h a t n e i t h e r module cost nor f a u l t r a t e
was normally d i s t r i b u t e d . F igures 1 and 2
i l l u s t r a t e these ph8nOmeM. Consequently, t h e
au thors adopted contingency table and nonpara-
metric c o r r e l a t i o n approaches to the a n a l y s i s
r a t h e r than r e l y i n g on nornal-distribution-based
techniques such as regress ion and a n a l y s i s o f
v a t iance .
To perform t h e contingency table a n a l y s i s , every
module w a s ass igned to one of three ordered
classes (of n e a r l y e q u a l s i z e) f o r each of the
q u a l i t y measures o f coat (low, medium, high) and
f a u l t rate (zero , medium, high) . The va lues
0.151 and 0.322 programmer hour per executab le
s ta tement d i v i d e d t h e modules into t h e t h r e e
cost classes (i.e., 0.151 or less was low
cost). F a u l t s were counted f o r each module from
t h e completion o f u n i t t e s t i n g u n t i l t h e end o f .
acceptance t e s t i n g . The va lue 0.045 f a u l t per
executab le s ta tement d i s t i n g u i s h e d between
medium- and high-faul t - ra te classes.
c o n s i s t e d o f those modules w i t h no f a u l t s . I t
was thus possible to form a series of 3-by-3
tables, each comparing classes o f module s t r e n g t h
or s i z e w i t h classes of module cost or f a u l t
r a t e .

One c lass

The s t r e n g t h o f r e l a t i o n s h i p s w a s assessed by
c a l c u l a t i n g the g a m a (y) c o r r e l a t i o n s ta t is-
t i g between t h e ordered classes o f modulari-
z a t i o n criteria and q u a l i t y measures.
statistic v a r i e s from -1.0 to +1.0. For example,
a p e r f e c t nega t ive c o r r e l a t i o n (-1.0) would re-
s u l t on ly i f a l l high-strength modules had z e r o
f a u l t s , a l l medium-strength modules had medium
f a u l t rates, and a l l l o r s t r e n g t h modules had
high f a u l t rates. V a r i a t i o n s i n programmer per-
formance also a f f e c t module cost and f a u l t
ra te l0; t h e r e f o r e , t h i s f a c t o r was also con-
sidered i n t h e g e n e r a l a n a l y s i s as w e l l as i n a
subsequent ana lys i s .

This

4-17

3 of 6

General R e s u l t s

I n i t i a l l y , module s t r e n g t h and s i z e were cross-
t a b u l a t e d w i t h cost and f a u l t rate. Lines 1 and
4 o f Table 3 list t h e c o r r e l a t i o n c o e f f i c i e n t s
ob ta ined from t h i s ana lys i s .
t i o n s h i p s were found between module s t r e n g t h and
f a u l t r a t e (y = -0.35) and between module s i z e
and c o s t (I = -0.31). The c r i t e r i o n f o r s i g -
n i f i c a n c e (probabi l i ty of error less than 0.001)
is very conservat ive. These c o r r e l a t i o n s seem
low, but Figures 3 and 4 provide better i l l u s -
t r a t i o n s of t h e magnitude o f these r e l a t i o n -
sh ips . Ful ly 50 percent o f high-strength
modules were f a u l t - f r e e whi le o n l y 18 percent o f
l o r s t r e n y t h modules were f a u l t - f r e e . Simi-

S i g n i f i c a n t rela-

MODE - 0.10
MEMAN - O D
MEAN - 0.37
MAXIMUM - 5.6

HOURS PER MECUTABLE STATEMENT

Figure 1. D i s t r i b u t i o n of Cost

MODE - 0.0
MEMIN - 0.02
MEAN = 0 . 0
MAXIMUM - 0.92

c
5 10
!.4
VI 0

12

8

4

- -
- - - - - -

o 0.02 0.01 0.0 0.m 0.10 0.12 0.14 0.92

FAULTS PER MECUTABLE STATEMENT

Figure 2. D i s t r i b u t i o n of F a u l t s

l a r l y , 46 p e r c e n t o f l a r g e modules f e l l i n t o t h e
lowest cost class, whereas j u s t 22 p e r c e n t Of
t h e small modules were rated as low cost.

Table 3. Contingency Table Resul t s

I EFFECT } 'ORREL/;TIONS' I 1
FAULT RATE COST RATE

CR'TERIA CONTROLLED

PROGRAMMER

SIZE STRENGTH 0.19 - 0 . d
PROGRAMMER 0 . 9

GAMMA (VI STATISTIC.
bPROBABLY LESS THAN 0.001 THAT CORRELATION IS ACTUALLY ZERO.

Table 1 i n d i c a t e s , however, t h a t module s t r e n g t h
and s i z e might be related to each o t h e r . Low-
s t r e n g t h modules tend to be l a r g e r . Lines 2 and
5 of Table 3 show the (p a r t i a l) c o r r e l a t i o n s
obta ined f o r module s t r e n g t h and s i z e individ-
u a l l y while c o n t r o l l i n g (removing) t h e e f f e c t of
t h e o ther .
rate remain e s s e n t i a l l y unchanged.
however, some i n t e r a c t i o n between module s t r e n g t h
and s ize wi th respect to module cost. (Compare
l i n e 1 versus l i n e 2 and l i n e 4 versus l i n e 5 i n
Table 3.)

The r e l a t i o n s h i p s w i t h module f a u l t
There is,

Contro l l ing f o r module s i z e , t h e c o r r e l a t i o n
between module s t r e n g t h and cost i n c r e a s e s from
-0.19 to -0.27 and becomes s i g n i f i c a n t . Con-
t r o l l i n g f o r module s t r e n g t h , t h e c o r r e l a t i o n
between module s i z e and cost i n c r e a s e s from
-0.31 to -0.38. These results imply t h a t , over-
a l l , high-strength modules (usua l ly small) tend
to be l o w cost but t h a t l a r g e modules also tend
to be low cost (independent o f module s t r e n g t h) .
Another s t u d y l l i d e n t i f i e d a similar r e l a t i o n -
s h i p between module s i z e and cost f o r a very
d i f f e r e n t type of software.

One previous studyL2 t h a t found a lower f a u l t
rate for l a r g e r modules based its conclus ions on
t h e behavior e x h i b i t e d by a small sample of
l a r g e modules.
e t r ic r e g r e s s i o n to a l a r g e r sample from the
same data base as t h i s study. As discussed
earlier, t h a t s tatist ical approach is inappro-
p r i a t e for non-normally d i s t r i b u t e d da ta .
Although t h e s e r e s u l t s c o n t r a d i c t t h e t w o
previous s t u d i e s o f f a u l t r a t e , t he c u r r e n t
r e s u l t s appear to be more robust.

Another study'' a p p l i e d param-

Thus fa r , t h e p o t e n t i a l e f f e c t s o f programmer
performance were ignored. Lines 3 and 6 of
Table 3 show t h e c o r r e l a t i o n s between t h e mod-
u l a r i z a t i o n cr i ter ia and q u a l i t y measures ob-
t a i n e d whi le c o n t r o l l i n g f o r t h e e f f e c t of
progr-r performance. (The i n t e r a c t i o n of
module s ize and s t r e n g t h is, however, no longer
cont ro l led .) The l a r g e changes from t h e i n i t i a l
c o r r e l a t i o n s demonstrate t h a t programmer per-
formance i n t e r a c t s wi th both module s i z e and
s t r e n g t h . The disappearance of the s i g n i f i c a n c e
o f the r e l a t i o n s h i p s between module s t r e n g t h and

4-18

4 of 6

40
25
25

9
Y
24
30

50
17
40
13
9

16
9

28

18

MEDIUM w

46
45
n

53
51
82
71

u)
47
48
64
90
38
u

m

n

HIGH
STRENGTH

MEDIUM
STRENGTH

LOW
!=rRENGTH

Figure 3. Faul t Rate f o r Classes of Wodule Strength

LARGE MEDIUM SMALL
132 TO 84 D(STMT) lam M STMTl I1 TO 31 EX STMT)

Figure 4. Deve lomnt Cost fo r Classes of nodule S ize

module cost and f a u l t r a t e ind ica tes t h a t these
r e l a t ionsh ips e x i s t because high-strength mod-
u l e s are associated with p r o g r l a w r s w h o produce
modules that cost less and have low module f a u l t
r a t e s .

Prwrammer-Swcific Results

The effect of p r o g r a ~ ~ a r performance w a 8 also
examined i n a subsequent analysis.
26 programmers i n t h e sample, 16 developed 9 or
mre modules.
counted for 413 of t h e total 453 modules. The
performance of these p rograawrs was reanalyzed
using nonparametric cor re la t ion9 to b e t t e r
def ine the r e l a t ionsh ip of proqramner perform-
ance to modularization criteria. Table 4
summarizes the data obtained from t h e
16 programmers.

For each of these programers, the percent of
zero-fault and lowsost modules was computed.
Table 5 shws the co r re l a t ions (by p r o g r a a e r)
between the modularization c r i t e r i a and the
q u a l i t y measures.
f au l t - r a t e modules (i.e., .good' programmers)
tend to produce high-strength modules. Good
programmers do not, however, appear t o have any
preference for a par t i cu la r module s i ze . The
lower s igni f icance l e v e l s associated with the
co r re l a t ion c o e f f i c i e n t s r e s u l t from t h e reduc-
t i o n i n sample s i z e produced by studying 16 pro-
grammers ins tead of 453 modules.

Of t h e

Together these prograimers ac-

Progra~..rs who produce low-

Table 4. Programmer Data Summary

PROGRAMMER

A
B
C
D
E
F
G

I
J
K
L
M
N
0
P

n

MEAN
DECISIONS PER

EXECUTABLE
STATEMENT

0.r)
0.35
0.40
0.33
0.23
0.36
0.32
0.31
0.29
0.26
0.41
0.31
0.39
0.33
0.30
0.34

Table 5. Nonparametric Correlation Results
(by Programer)

CORREUTIONS~
CRITERIA

MODULE STRENGTH
MODULE SIZE -0.17 -0.18

aSPEARMAN CORRELATION COEFFICIENT.

bPROBABIUTY LESS THAN 0.06 THAT CORRELATION IS ACTUAL-
LY ZERO.

4-19

5 of 6

Figure 5 i l l u s t r a t e s t h e r e l a t i o n s h i p between
module s t r e n g t h and t h e f a u l t rate. Although
t h e t r e n d is c l e a r , a g r e a t deal o f unexplained
v a r i a t i o n is also present .
c o n s i s t s o f more than j u s t w r i t i n g high-strength
modules.

Good programming

90c

n
P

Figure 5. M u l e St rength and F a u l t s by
Programmer

CoNcWls IONS .

The preceding d iscuss ion examined t h e r e l a t i o n -
s h i p between modular izat ion cri teria and q u a l i t y
measures from two perspectives: t h e i r o v e r a l l
e f f e c t and the c o n t r i b u t i o n o f i n d i v i d u a l pro-
grammer performance. Conclusions based on t h e
contingency table a n a l y s i s (l i n e s 2 and 5 of
Table 3) are correct as stated. Finding t h a t
p r o g r m e r performance accounts f o r s o m e o f t h e
s t r e n g t h of t h e s e r e l a t i o n s h i p s does n o t a f f e c t
their v a l i d i t y . However, t h i s r e s u l t does high-
l i g h t t he d i f f i c u l t y of s e p a r a t i n g t h e e f f e c t s
o f programmer performance from those of tech-
nology or m e t h o d o l ~ g y . ~ ~ Furthermore, i t
enables u s t o l e a r n a b o u t software development
i n t he way that Soloway" p r e s c r i b e s , by ob-
serv ing what good programmers do. Conclusions
based on t he preceding a n a l y s i s are as follows:

0 Good programaers tend to write high-
s t r e n g t h modules.

0 Good programmers show no preference f o r
any s p e c i f i c module s i z e .

0 Overall, high-strength modules have a
lower f a u l t rate and cost less than
low-strength modules.

0 Overall, l a r g e modules cost less (per
executab le s ta tement) than small mod-
u les .

0 F a u l t rate is not d i r e c t l y r e l a t e d to
module s i z e .

These conclus ions sugges t t h a t module s i z e
should n o t be a r b i t r a r i l y limited by any pro-
gramming s tandard.
t h i s sample f e l l b e l o w t he local s i z e g u i d e l i n e
o f two pages (about 64 executable s t a t e m e n t s) ,
even though t h i s is not a n enforced s tandard.
As noted by Bawen4, t h e a p p l i c a t i o n of a good
des ign methodology u s u a l l y r e s u l t s i n modules
w e l l below t h e common s i z e l i m i t s .

Two-thirds of t h e modules i n

General ly , programmers should be encouraged t o
write high-strength modules b u t to make those
modules l a r g e enough to encompass a n e n t i r e
funct ion. Because low-strength modules a r e
l i k e l y to be l a r g e r than average, a module s i z e
cri teria may have a n i n d i r e c t favorable e f f e c t
on t he f a u l t rate. However, the cost advantages
associated w i t h l a r g e r modules d i c t a t e t h a t
l a r g e , high-strength modules must a l s o be ac-
ceptab le . Large modules may be a p p r o p r i a t e f o r
some t y p e s o f sof tware (f o r example, mathe-
matical a lgor i thms) .

Programmers, e s p e c i a l l y t h e less experienced
ones, should be encouraged to write high-
s t r e n g t h modules because t h i s is a charac te r -
istic of s u c c e s s f u l programmers. The f u r t h e r
development of o b j e c t i v e measures of module
s t r e n g t h may make t h i s c r i t e r i o n more p a l a t a b l e
to o r g a n i z a t i o n s t h a t use formal q u a l i t y assur -
ance procedures.
s t r e n g t h should show a n even higher c o r r e l a t i o n
w i t h f a u l t rate. In t h e in te r im, a simple
c h e c k l i s t o f t h e number of types of f u n c t i o n s
performed can provide a s imple b u t e f f e c t i v e
assessment o f s t r e n g t h f o r q u a l i t y assurance
purposes.

A better measure of module

21

31

4-20

W. P. Stephens, G. J. Meyers, and
L. L. Constant ine, *St ruc tured Design,-
IBM Systems Journa l , 1974, vol . 13, no. 21
pp. 115-139

D. L. Parnas, "On t h e Cri ter ia to be Used
i n Decomposing Systems i n t o Modules,'
Communications, December 1972, vo l . 15,
no. 12, pp. 1053-1058

B. W. Rernighan and P. S. Plauger , The
Elements of Proqramminq Sty le . N e w York:
HCGraw H i l l , 1974, p. 126

J. D. Bowen, .Module Size: A Standard or
H e u r i s t i c ? , - J o u r n a l o f Systems and Sof t -
=, 1984, no. 4, pp. 327-332

D. N. Card, F. E. McGarry, G. 1. Page, e t
al., The Software Engineering Laboratory,
NASA/GSFC, February 1982

6 of 6

[6] G. J. Myers, Composite/Structured Design.
New York: Van Nostrand Reinhold, 1978

[7] R. D. Cruickshank and J. E. Gaffney,
*Measuring the Developent Process: Soft-
ware Design Coupling and Strength
Matrices," Proceedings of the Fifth
Annual Software Engineering Workshoe,
NASA/GSFC, November 1980

[81 T. J. Emerson, "A Discriminant Metric for
Module Cohe8ionr" Proceedinss of the
Seventh International Conference on Soft-
ware Engineering, 1984, pp. 294-303

[SI L. A. Marascuilo and M. McSweeney, e
earmetric and Distribution Free Methods
for the Social Sciences. California:
Brooks/Cole, 1977, pp. 466-471, pp. 431-435

[lo] F. E. McGarry, 'Measuring Software Devel-
opment Technology,' Proceedings of the
Seventh Annual Software Engineering Work-
shop, NASA/GSPC, December 1982

121

13 I

P. C. Belford, R. C. Berg, and
T. L. Xannan, "Central Flow Control Soft-
ware Development: A Case Study of the
Effectiveness of Software Engineering
Techniques,. Proceedings of the Fourth
International Conference on Software Engi-
neering, September 1979, pp. 85-93

V. R. Basili and B. T. Perricone, *Soft-
ware Errors and Complexity:
Investigation," ACM Communications,
January 1984, vol. 27, no. I, pp. 42-52

D. N. Card, P. E. McGarry, and G. T. Page,
*Evaluating Software Engineering Tech-
nologies," Proceedinqs of the Eighth
Annual Software Engineering Workshoe,
NASA/GSFC, November 1983

D. Littman, K. Ehrlich, E. Soloway, and
J. Black, "You Can Observe a Iat by Just
Watching How Designers Design,' Proceed-
ings of the Eishth Annual Software En9i-
neerina Workshoo, NASA/GSFC, November 1983

An Empirical

\

4-21

